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ABSTRACT
Standard cells are essential components of modern digital circuit
designs. With process technologies advancing beyond 5nm, more
routability issues have arisen due to the decreasing number of rout-
ing tracks (RTs), increasing number and complexity of design rules,
and strict patterning rules. The standard cell design automation
framework is able to automatically design standard cell layouts, but
it is struggling to resolve the severe routability issues in advanced
nodes. As a result, a better and more efficient standard cell design
automation method that can not only resolve the routability issue
but also scale to hundreds of transistors to shorten the development
time of standard cell libraries is highly needed and essential.

High quality device clusteringwith the considerations of routabil-
ity in the layouts of different technology nodes can reduce the
complexity and assist finding the routable layouts faster. In this
paper, we develop a novel transformer model-based clustering
methodology - training the model using LVS/DRC clean cell layouts
and leveraging the personalized page rank vectors to cluster the
devices with the attentions to netlist graph and learned embeddings
from the actual LVS/DRC clean layouts. On a benchmark of 94
complex and hard-to-route standard cells, the proposed method not
only generates 15% more LVS/DRC clean layouts, but also achieves
average 12.7× faster than previous work. The proposed method can
generate 100% LVS/DRC clean cell layouts over 1000 standard cells
and achieve 14.5% smaller cell width than an industrial standard
cell library.

CCS CONCEPTS
• Hardware→ Standard cell libraries; • Computing method-
ologies → Machine learning.
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1 INTRODUCTION
Standard cells are the essential components of digital Very Large-
Scale Integration (VLSI) designs. As process technologies relent-
lessly advance beyond 5nm, the decreasing number of routing
tracks, increasing number of design rules, and strict patterning
rules are leading to severe routability issues in standard cell layouts.
Experienced standard cell designers are facing enormous challenges
to design the high-quality standard cell layouts and deliver cell li-
braries, which have thousands of standard cells for each technology
node, in time for VLSI circuit design and physical implementation,
because of the limited in-cell routing resources, increasing number
and complexity of design rules, and strict patterning rules. There-
fore, a fast and efficient automatic standard cell design automation
method that can not only resolve the routability issue but also
scale to hundreds of transistors is of great importance in advanced
technology nodes.

Recently, some automated standard cell synthesis tools such as
NVCell [1] and BonnCell [2], have been shown to generate high
quality cell layouts on advanced technology nodes. However, one
of the key challenges of these automated standard cell synthesis
tools is that the generated placement for any given cell could be
unroutable or unable to be routed without DRC errors. NVCell2 [3]
develops a lattice graph routability model and successfully improves
the routability in the advanced technology nodes. However, its
performance is not scale to hundreds of transistors because the
model inference needs to be performed for every action in the
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simulated annealing-based placement algorithm [1] and the cell-
level metrics (i.e., cell width (CW) and total wirelength (TWL)) are
compromised for routability.

High quality device clustering with the considerations of diffu-
sion sharing/break, routability, and DRCs of routing metals in the
layout of different technology nodes can reduce the complexity,
narrow down the searching spaces, and assist finding the routable
layouts faster in the placement stage as shown in Figure 1. In this
paper, we developed a novel transformer model based clustering
methodology - training the model using LVS/DRC clean cell lay-
outs and leveraging the personalized page rank vectors [4, 5] to
draw the local attentions on netlist graph and consider the learned
embeddings preference from the actual LVS/DRC clean layouts
of each device for clustering. We demonstrate that the proposed
novel transformer model based clustering method can successfully
generate 100% LVS/DRC clean cell layouts over 1000 standard cells
in an industrial standard cell library, and achieves 14.5% smaller
cell area than the industrial standard cell library.

Our main contributions are as follows.

• We propose a novel transformer model based clustering
methodology for standard cell layout automation. We train
the model using LVS/DRC clean cell layouts and leverage the
personalized page rank vectors [4, 5] to cluster the devices
with the attentions to netlist graph and learned embeddings
from the actual LVS/DRC clean layouts. The proposed novel
transformer model based clustering methodology can gener-
ate the device clusters with the considerations of the routabil-
ity, design rules, and netlist structure, simultaneously.

• On a set of 94 hard-to-route cell benchmark on the advanced
nodes, the proposed method not only generates 15% more
LVS/DRC clean layouts than one of the state-of-the-arts
routability-driven standard cell design automation method,
NVCell2 [3], but also improves avg. Cell Width (CW) and
avg. Total Wirelength (TWL) by 3.9%, and 3.3%, respectively.
Moreover, the proposed method achieves 12.7× faster than
NVCell2 [3] on average for the complex cells.
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Figure 1: An illustration of high quality clustering with the considerations
of diffusion break/sharing, routability, and DRCs of routing metals in the
layout can reduce the complexity, narrow down the solution space, and find
the routable layouts faster in the placement stage.

• We use multi-objective BOHB [6, 7] to explore the weights
of cell width, routability, and cluster design constraints to
generate competitive cell layouts in terms of cell width,
routability, number of DRC errors, and total wirelength.

• The proposed novel transformer model based clustering
methodology for standard cell layout automation achieves
cell layouts with smaller cell area than the existing industrial
standard cell library for 14.5% of over 1000 cells.

The remaining sections are organized as follows. Section 2 reviews
prior works in standard cell layout automation and gives a brief
overview of the original NVCell [1] and NVCell2 [3] that this work
is built upon. Section 3 describes our novel transformer model based
clustering methodology. Section 4 presents our main experiments.
Section 5 concludes the paper.

2 BACKGROUND
Standard cell layout automation includes placement and routing
steps. The placement step places devices; the routing step connects
device terminals and pins based on net connectivity.
Sequential standard cell synthesis approach: It performs the
placement step first and then the routing step such as [8], [2], [9], [1],
and [3]. Placement techniques include heuristic based methods,
exhaustive search based methods, and mathematical programming
based methods. Routing techniques include channel routing, SAT,
andMixed-Integer Linear Programming (MILP) based routing meth-
ods. [8] leveraged MILP algorithms to find optimal device place-
ment. [2] and [9] used branch and bound or dynamic programming
techniques to explore optimal transistor placement exhaustively
and then formulate the MILP for in-cell routing. Recently, [1]
and [3] used the simulated annealing technique to generate optimal
transistor placement, leveraged genetic algorithms for routing, and
applied reinforcement learning to fix the design rule violation. Ho
et al. [3] proposed lattice graph routability model to improve the
routability of generated placements, but its performance is not scale
to hundreds of transistors because the model inference needs to
be performed for every action in the simulated annealing-based
placement algorithm and the cell-level metrics (i.e., CW and TWL)
are compromised for routability.
Simultaneously standard cell synthesis approach: There are
also several works proposing to solve the placement and routing
problems simultaneously using Satisfiability-modulo-theory (SMT)
in [10], [11], [12], and [13]. By encoding the design rules in the en-
gine, simultaneously standard cell synthesis approach can generate
routable standard cell layouts. However, their scalability is worse
than sequential standard cell synthesis approaches on large and
complex standard cell designs (i.e., more than 50 devices).

2.1 NVCell Framework
The NVCell framework [1] [3] is a sequential standard cell automa-
tion approach, which consists of placement and routing stages. In
the placement stage, given a set of PFET and NFET devices, the
goal of placement is to place them on the PFET row and NFET
row of the cell layout while satisfying technology constraints.
Here, the conventional simulated annealing algorithm is selected
because its adaptability to custom layout constraints and ease of
implementation. The designed simulated annealing based algorithm
does both pairing and ordering simultaneously. Simulated annealing
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Figure 2: Overview of the proposed transformer model based clustering methodology and standard cell layout automation framework flow. The generated device
clusters are fed into the standard cell layout automation framework to reduce the complexity and assist finding routable solutions faster.

makes moves on a placement representation which specifies the
placement order of pins, ordering of NFET and PFET devices, and
whether to flip a device orientation (switching the source and drain
positions). It optimizes a scoring function which is a weighted
sum of cell width, routability estimation, and estimated wirelength.
These moves can be categorized either by the types of moves or
by the targeted devices of the moves. The Flip changes all targeted
devices flip flag. The Swap swaps targeted devices. The Move moves
targeted devices to a specific location. The target devices can be
either consecutive PFET devices, consecutive NFET devices, or
consecutive PFET/NFET device pairs. The simulated annealing
algorithm is implemented based on the modified Lam annealing
schedule [14] that requires no hyperparameter tuning.

There are two routabiltiy-driven placement methods in the NV-
Cell framework: a pin density aware congestion (PDA) metric and a
lattice graph routability model. The PDA metric is used to capture
the number of required contacts to lowest metal layer (i.e., M0)
in a local area and number of crossing nets, which exclude the
nets within the local area. The lattice graph routability modelling
approach captures the routability of local areas, routability impacts
between local areas, and global net connections in the standard
cell. These routability-driven placement methods help improve
the success rate of routable placement generation, but they are not
efficient enough to scale to hundreds of devices [3] and the cell-level
metrics (i.e., CW and TWL) are compromised for routability.

In the routing phase, there are two steps: a genetic algorithm-
based routing step and a Reinforcement Learning (RL)-based DRC
fixing step [15]. The genetic algorithm drives a maze router to
create many routing candidates, and the DRC RL agent reduces
the number of DRCs of a given routing candidate [1]. The genetic
algorithm based routing algorithm uses routing segments as the
genetic representation in that it ensures that good routing islands
in the routing structure are preserved during genetic operations
such as crossover and mutation. The fitness of each individual
chromosome in a generation is evaluated based on two metrics:

the number of unrouted terminal pairs and the number of DRCs.
The standard cell external pins are dynamically determined with
dynamic external pin allocation methods [3] in the routing phase.

3 NOVEL TRANSFORMER MODEL BASED
CLUSTERING METHODOLOGY

We introduce the novel transformer model based clustering method-
ology for standard cell layout automation frameworks as shown in
Figure 2. Given a cell netlist and layout specification, the proposed
novel transformer model based clustering methodology generates
the device clusters. It is used to assist the placer to find optimal
solutions faster in the standard cell layout automation framework.
Here, we integrate the novel transformer model based clustering
method with NVCell framework [1, 3], which uses a simulated
annealing based placer [1] with PDA metric and device clustering
constraint to generate placements. Then, the genetic algorithm
based router with dynamic external pin allocation [3] are lever-
aged to generate optimized standard cell layouts. We firstly show
transformer encoder modeling approach in section 3.1. Then, we
introduce the novel netlist and layout graphs aware clustering
approach in section 3.2. Lastly, we introduce the methodology
of using the generated clustering result for standard cell design
automation in section 3.3. The notations are in Table 1.

Table 1: Notation Table
Term Description
𝐺 Netlist logic graph.
𝐺𝑙 Layout graph.
𝑣 Represent a device node in𝐺 or𝐺𝑙 .
𝐷 Set of devices in the netlist. |𝐷 | is the number of devices.
𝑁 (𝑣)/𝑁𝑙 (𝑣) Set of neighbor nodes of 𝑣 in𝐺 /𝐺𝑙 .
𝑑𝑣 Extracted graph embedding of device 𝑣.
ℎ𝑣 Hidden representation of device 𝑣 in transformer encoder model.
𝑦𝑣 Representative embedding of device 𝑣 from transformer encoder model.
𝑑𝑖𝑚 The dimension of 𝑑𝑣 and 𝑦𝑣 . Here, 𝑑𝑖𝑚=128.
Y Representative embedding matrix with |𝐷 | × 𝑑𝑖𝑚 from transformer

encoder model.
B Device placement-aware transition matrix of𝐺 .
𝐶𝑖 Clustering cost of 𝑖𝑡ℎ cluster in a given placement.
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Figure 3: (a) The transformer encoder architecture. (b) Training flow: the transformer encoder model is trained with similarity loss (𝐿𝑠𝑖𝑚 ) based on the layout graph.

3.1 Transformer Encoder Modeling
We introduce the transformer encoder modeling approach, which
generates the representative embeddings of devices in the lay-
out graph from the input netlist logic graph. Figure 3 shows the
transformer encoder modeling approach including the transformer
encoder architecture and training flow. We extract the netlist logic
graph from the circuit netlist as described in [1]. The layout graph
consists of PFET and NFET gate terminal columns from left to right,
and PFETs and NFETs including dummy devices are placed on the
intersecting grid points. Each grid point is connected to the adjacent
grid points in the layout graph. There are multiple possible layout
graphs for a netlist logic graph. Given the netlist logic graph, we
use the transformer encoder model to learn the device clusters to
optimize the cell-level metrics and routability on the layout graph.
Firstly, we introduce the input features and device token extraction.
Secondly, we show the proposed transformer model architecture.
Lastly, we introduce the training flow.
Input Features and Device Token Generation: Given a cell
netlist, we construct a netlist logic graph, 𝐺 (𝑉 , 𝐸), where the pins,
nets, and devices are represented as nodes and the connectivity be-
tween the nodes are derived from the types of connections, such as
source-to-net, net-to-gate, pin-to-net, etc. Then, we use GINE [16]
network, a modified Graph Isomorphism Network (GIN) [17] to
incorporate edge features into the aggregation procedure, to extract
the netlist logic graph embeddings of devices as the input tokens
to the transformer model. The GINE updates node representations
as Equation (1).

𝑑
(𝑘 )
𝑣 = Θ((1 + 𝜖)𝑑𝑘−1𝑣 +

∑︁
𝑢∈𝑁 (𝑣)

𝑅𝑒𝐿𝑈 (𝑑𝑘−1𝑢 +𝑚𝜃 (𝑒𝑢,𝑣))) (1)

where 𝑑𝑘𝑣 and 𝑑𝑘−1𝑣 are the new and previous embeddings of node 𝑣 ,
respectively; 𝑑𝑘−1𝑢 is the previous embedding of node 𝑣 ’s neighbor
node𝑢; 𝑒𝑢,𝑣 is the edge features of edge between𝑢 and 𝑣 ;𝑚𝜃 is a lin-
ear network that maps edge feature dimensions to node embedding

dimensions; and Θ is another linear network that maps input node
embedding dimensions to output node embedding dimensions.
TransformerModel Architecture: The transformer model allows
each input token attends to the information at any position globally
and then process its representative embeddings. The locality of
a sequential data are encoded as the relative distance of any two
positions [18] in the transformer layer. However, the nodes are
not arranged as a sequence for graphs. They can be in a multi-
dimensional spatial space and connected by edges. To encode the
structural information in the netlist logic and layout graphs, we
use the netlist and layout graph aware multi-head attention layer
to capture the spatial relation of devices in the netlist logic graph,
and the device placement relation (i.e., diffusion sharing, vertical
PFET-NFET gate/diffusion connection, etc.) in the layout graph.

Figure 4 shows the netlist and layout graph aware multi-head
attention mechanism. For spatial relation, given any netlist logic
graph𝐺 (𝑉 , 𝐸), we can use a function 𝜙 (𝑣,𝑢) to measure the spatial
relation between 𝑣 and 𝑢 in the graph 𝐺 . The function 𝜙 can be
defined by the connectivity between nodes. In this paper, we define
𝜙 (𝑣,𝑢) as the shortest path distance of 𝑣 and 𝑢 in the graph 𝐺 .

Linear Linear Linear
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Figure 4: Netlist and layout graph aware multi-head attention mechanism.
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For device placement relation, we can extract the potential diffu-
sion sharing and vertical PFET-NFET gate/diffusion connection
relations (𝜅 (𝑣,𝑢)) of device pairs in the layout graph from the
connectivity of devices in the spice netlist. In the netlist and layout
graph aware multi-head attention layer, we assign learnable scalars
for spatial relation and device placement relation and use them
as bias term in the self-attention module. The Query-Key product
(𝑎𝑣,𝑢 ) of 𝑣 and 𝑢 can be written as Equation (2) below.

𝑎𝑣,𝑢 =
(ℎ𝑣WQ) (ℎ𝑢WK)𝑇√

𝑑𝑖𝑚
+ 𝑏𝜙 (𝑣,𝑢 ) + 𝑏𝜅 (𝑣,𝑢 ) (2)

where ℎ𝑣, ℎ𝑢 ∈ 𝑅1×𝑑𝑖𝑚 are hidden representation of 𝑣 and𝑢, respec-
tively. The WQ and WK are the projection matrix for Query and
Key, respectively. Here, we consider the single-head self-attention
for simplicity of illustration.

The transformer encoder layer is composed of 3 stacked identical
layers in this paper. Each layer has two sub-layers. The first is a
multi-head self-attention mechanism [19] with the relative graph
distance and layout aware diffusion attention bias, and the second
is a simple, position wise fully connected feed-forward network.
The residual connection [20] is employed around each of the two
sub-layers, followed by layer normalization [21]. The residual con-
nections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension 𝑑𝑖𝑚=128. The number of
heads is 8 in the multi-head self-attention layer.
Training Flow: We adopt unsupervised learning to learn the
representative embeddings of devices in layout graph for device
clustering. We use the “similarity loss" (𝐿𝑠𝑖𝑚) as the objective for
training flow and it is directly calculated from the learned represen-
tative embeddings of devices as shown in Figure 3 (b). The key idea
behind is to learn the relations of devices being placed adjacently in
the LVS/DRC clean layout graph and encourage the devices which
share similar relations to have higher probabilities of being assigned
into the same cluster, while making devices that don’t have the
similar relations in layout graph to have lower probabilities. As a
result, the trained transformer model can generate device clusters
that considering the device accessibility, routability, and DRC in
layout graph. The loss function 𝐿𝑠𝑖𝑚 is designed as:

𝐿𝑠𝑖𝑚 =
∑︁
𝑣

(−
∑︁

𝑢∈𝑁𝑙 (𝑣)
𝑙𝑜𝑔 (𝜎 (𝑦𝑇𝑣 𝑦𝑢 ) ) −

∑︁
𝑘∼𝑟𝑎𝑛𝑑

𝑙𝑜𝑔 (𝜎 (−𝑦𝑇𝑣 𝑦𝑘 ) ) ) (3)

where 𝑦𝑣 denotes the learned representative embeddings of node 𝑣 ,
𝜎 denotes the sigmoid function, and 𝑘 ∼ 𝑟𝑎𝑛𝑑 denotes the random
sampling operation over the full LVS/DRC clean layout graph.𝑁𝑙 (𝑣)
represents the neighbor nodes of 𝑣 in the LVS/DRC clean layout
graph. By minimizing Equation (3), the neighboring nodes in the
layout graph will be encouraged to have similar representative em-
beddings 𝑦, which increases the probability of them being assigned
to the same cluster and hence reduces the complexity and assist
finding the routable layout more efficient and faster.
3.2 Netlist and Layout Graphs Aware Clustering
We leverage the personalized page rank vectors [4, 5] of devices to
draw the local attentions on netlist graph and consider the learned
embeddings from the transformer encoder model to generate robust
clustering results across different cell designs, Here, the person-
alized page rank vector of a device is a stationary distribution

to other devices for the random walk on the netlist logic graph
with the predicted preference from the trained model. Given the
representative embeddings of 𝑖𝑡ℎ device, 𝑦𝑖 , the predicted cluster
preference probability vector of 𝑖𝑡ℎ device is 𝜎 (𝑦𝑇

𝑖
Y). Y is the

representative embedding matrix with |𝐷 | × 𝑑𝑖𝑚 from the trained
model. The personalized page rank vector of 𝑖𝑡ℎ device (𝑝𝑖 ) can
be obtained by using power iterations of Equation (4). Then, we
apply DBScan algorithm [22] to cluster devices on the obtained
personalized page rank vectors of devices.

𝑝𝑘𝑖 = 𝑐B𝑝𝑘−1𝑖 + (1 − 𝑐)𝜎 (𝑦𝑇𝑖 Y) (4)

where 𝑝𝑘
𝑖

∈ 𝑅 |𝐷 |×1 is the personalized page rank vector of 𝑖𝑡ℎ

device in 𝑘𝑡ℎ iteration. The 𝑝0
𝑖
is set to equal to the 𝜎 (𝑦𝑇

𝑖
Y) for

power iterations. 𝑐 and (1 − 𝑐) represent probabilities jumping
between the netlist logic graph the predicted preference probability
vector of 𝑖𝑡ℎ device. B ∈ 𝑅 |𝐷 |× |𝐷 | is the device placement-aware
transition matrix of netlist logic graph, 𝐺 , and |𝐷 | is the number
of devices in the netlist. Different types of connection edge of
device terminals have different edge weights based on the diffusion
sharing and vertical gate/diffusion connection property in B. For
example, the edge weights of diffusion sharing edges, and vertical
gate/diffusion connection edges are set to larger weights than other
edges (i.e., drain-to-gate, pin-to-gate, etc.). The element, 𝑏𝑖, 𝑗 , in B
is written in the Equation (5).

𝑏𝑖, 𝑗 =
𝑤𝑒 𝑗,𝑖∑

𝑘∈𝑜𝑢𝑡 ( 𝑗 ),𝑘≠𝑗 𝑤𝑒 𝑗,𝑘
(5)

where 𝑤𝑒 𝑗,𝑖 is the weight of edge from 𝑗𝑡ℎ device to 𝑖𝑡ℎ device.
𝑜𝑢𝑡 ( 𝑗) represents a set of devices that connected to 𝑗𝑡ℎ device. In
summary, the proposed novel transformer model-based clustering
methodology can leverage netlist logic connections, and the pre-
dicted routability-aware preference probability vector to generate
high quality device clusters for reducing complexity, narrowing
down the searching spaces, and assist finding routable placements.

3.3 Clustering Constraints for Standard Cell
Design Automation

We introduce the methodology of using generated clustering con-
straints for standard cell design automation. We use a device clus-
tering cost (i.e., 𝐶𝑖 ) which measures the number of transistors, that
are not in 𝑖𝑡ℎ cluster, being placed inside the 𝑖𝑡ℎ cluster bound-
ing box region in the current placement. Then, we minimize the
sum of device clustering costs of clusters to generate the standard
cell layouts. Figure 5 shows an illustration of the clustering cost
calculation. In this example, 𝐶1 is 3 since there are 3 transistors
(i.e., 2 transistors are C2 and 1 transistor is C3) being placed in
the bounding box region of cluster 1. 𝐶2 and 𝐶3 can be calculated
accordingly.

NFET Row

PFET Row C2 C1 C1

C2 C1 C1

C2

: Dummy NFET/PFET. CN  : Device in the 𝑵𝒕𝒉 Cluster.

Bounding box of 𝐶1 𝑪𝟏 = 𝟑

C3

C2 C3

Figure 5: An example of clustering cost (𝐶𝑖 ) calculation.
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The device clustering cost can be integrated into the objective
functions of standard cell synthesis framework for multi-objective
optimization [3] in Equation (6).

Minimize𝑤𝑎 ×𝐶𝑊 +𝑤𝑚 ×𝑇𝑊𝐿 +𝑤𝑐 ×
∑︁
𝑖∈ |𝐶 |

𝐶𝑖 (6)

where𝑤𝑎 ,𝑤𝑚 ,and𝑤𝑐 are the weights of cell area, total wire length,
and the summation of device clustering costs, respectively. Here,
we use multi-objective BOHB [6, 7] method for multi-objective
optimization for Equation (6), which includes multi-objective tree-
structured parzen Estimator (MOTPE) [7], and HyperBand [23].
MOTPE is amulti-objective Bayesian optimization algorithm for the
hyperparameter optimization with categorical hyper-parameters in
a tree-structured [7]. Hyperband searches the best time allocation
for each of the hyperparameter configurations [23].

4 EXPERIMENTAL RESULTS
Our work is implemented with Python and runs on a server with

multiple Intel Xeon CPUs. It generates a simplified grid-based cell
layout, which is given to a separate Perl program called Sticks to
handle DRC checking and conversion to tapeout quality Cadence
Virtuoso layout.

We firstly study the clustering quality of various models and
representative node vectors for DBScan clustering method [22]
on training set, which has 250 LVS/DRC clean cell layouts, using
silhouette coefficient1. To demonstrate that the high quality device
clustering with the considerations of routability in the layouts can
reduce the complexity and assist finding the routable layouts faster,
we conduct extensive studies on the routability and performance
using the selected 94 complex and hard to route standard cells in
an advanced node from an industrial technology [3]. Lastly, we
apply the proposed transformer model based clustering method to
generate optimized cell layouts on the single row cells (i.e., over
1000 cells) in an industrial standard cell library.

Figure 6 shows the number of devices and nets statistics of 250
cells training set and 94 complex cell benchmark. The maximum
number of devices and nets in 250 cells training set are 84 and 35,
respectively. For the 94 complex cell benchmark, there are 5 cells
with number of devices larger than 90, and the maximum number
of nets is around 50.

Figure 6: Cell statistics of 250 cells training set and 94 complex cell benchmark.

4.1 Clustering Quality Study
We study the clustering quality of various models and representa-
tive node vectors for DBScan clustering method [22] on 250 cells
training set using silhouette coefficient. The silhouette coefficient
is calculated based on the clustering result and the actual LVS/DRC
1The silhouette Coefficient is widely used to measure the quality of clusters by
calculating the mean intra-cluster distance and the mean nearest-cluster distance
for each sample.

Table 2: Clustering Quality Table. Silhouette coefficients of various models
and node representative vectors for DBScan clustering method on 250
cells for training. Pred. preference=Predicted preference. PPR without Pred.
Preference=personalized page rank vector without predicted preference.
PPR with Pred. Preference=personalized page rank vector with predicted
preference.

Rep. Node Vectors Model Avg. Silhouette Impr. (%)

Pred. preference GINE 0.21 200%
Transformer based 0.42 50%

PPR without
Pred. Preference - 0.22 186%

PPR with
Pred. Preference

GINE 0.37 70%
Transformer based (proposed) 0.63 -

clean layout placement. For model comparison, we train GINE net-
work and the proposed transformer model based architecture using
the similarity loss 𝐿𝑠𝑖𝑚 to learn the representative embeddings of
each devices in layout graph. We use the following representative
vectors with DBScan clustering method for comparison.

• Predicted preference:We apply the predicted preference
probability vector of each device (i.e., 𝜎 (𝑦𝑇

𝑖
Y)) from the

trained models directly for DBScan clustering.
• Personalized page rank vector without predicted pref-
erence:We calculate the personalized page rank vector of
each device on netlist logic graph and the preference proba-
bility vector distribution which is 1 for the corresponding
device node and 0 elsewhere [24].

• Personalized page rank vector with predicted prefer-
ence:We calculate the personalized page rank vector of each
device on netlist logic graph and the predicted preference
probability vector from trained models (i.e., Equation (4)).

Table 2 shows the silhouette coefficients of various models and
node representative vectors for DBScan clustering method on 250
cells training set. For model comparison, we observed that trans-
former based model architecture achieves 200%, and 70% improve-
ments on avg. silhouette coefficients compared to GINE network
using predicted preference vector only, and personalized page rank
vector with predicted preference for clustering, respectively. The
advantages of proposed transformer based model architecture over
GINE are from the globally receptive field, structural information
of netlist graph, and device placement relations in layout graph.
Figure 7 shows the training loss curves of the proposed transformer
based model architecture and GINE. We can observed that the
proposed transformer based model architecture can learn and cap-
ture the relations of devices in layout graph given the netlist logic
graph more efficiently than GINE model. For representative node
vectors comparison, the proposed method achieves 50%, and 186%
larger silhouette coefficients than predicted preference vector only,
and personalized page rank vector without predicted preference,
respectively. The avg. probability 𝑐 is 0.52 in the proposed method,
which indicates that the proposed clustering method leverages the
(a) Transformer based model 

Epochs

Lo
ss

Epochs

Lo
ss

(b) GINE model

Figure 7: The training loss, 𝐿𝑠𝑖𝑚 , curves of using (a) transformer based model
architecture, and (b) GINE model. The red line indicate the 𝐿𝑠𝑖𝑚 = 100000.
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(a) Generated LVS/DRC Cell Layout

(b) Attention Heat Map of the Generated LVS/DRC Cell Layout
Netlist & Layout Graph Aware Multi-Head Attention Layer 1

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8 

Netlist & Layout Graph Aware Multi-Head Attention Layer 2

Netlist & Layout Graph Aware Multi-Head Attention Layer 3

Figure 8: (a) Generated LVS/DRC clean layout of a latch cell with 56 CPPs. Manual cell width is 58 CPPs. (b) Attention heat map of the latch cell.

device placement-aware connections in netlist logic graph and the
predicted cluster preference probability considering the transistor
terminal accessibility, and routability in the layout graph together.

In summary, the proposed clustering method using transformer
based model architecture and the personalized page rank vector
with predicted preference can generatemore robust and high quality
cluster results.

4.2 Routability and Performance Experiment
It is very challenging and critical for standard cell design automa-
tion framework to generate the LVS/DRC clean cell layout for
complex and hard to route cells with industrial cell standard and
be able to scale up to hundreds of transistors. To demonstrate
that the high quality device clustering with the considerations of
routability in the layouts can reduce the complexity and assist
finding the routable layouts faster, we use the 94 hard to route
standard cell benchmark [3] for the routability and performance
study. The number of transistors is from 14 to 114. There are 57 Flip-
flops, 21 Combinational cells, and 15 Latchs. There are 35 unseen
cell designs for the model in the 94 cell benchmark.

Table 3 shows the cell-level metrics (i.e., CW, TWL, and routabil-
ity) of NVCell [1], NVCell2 [3], and the proposed method using
the 94 cell benchmark. We don’t measure the improvement of
the proposed method over NVCell [1] since NVCell [1] failed to
generate any routable cell layouts of the 94 cell benchmark. The
proposed method not only generates 15% more LVS/DRC clean
layouts than NVCell2 [3], but also improves avg. CW and avg.
TWL by 3.9%, and 3.3%, respectively. Moreover, the avg. CW of the
proposed method is 0.8% smaller than the manual cells from the
industrial library. Compared to NVCell2 [3], the proposed method

increases 33.3% and 57.1% of the number of smaller CW and same
CW layouts, respectively. In the meanwhile, the number of larger
CW layouts are decreased by 57.7%. Figure 8 shows the generated
LVS/DRC clean cell layouts of a latch cell (∼100 devices) using the
proposed method in stick format and its attention heat maps. For
the performance, Figure 9 shows that the proposed method achieves
12.7× faster than NVCell2 [3] on average for the cells with #devices
larger than 80 in the 94 cell benchmark.
4.3 Entire Cell Library Experiment
We apply the proposed transformer model based clustering method
to generate optimized cell layouts on the single row cells (i.e., over
1000 cells) in an industrial standard cell library. Given the device

Table 3: Cell statistics of the 94 hard-to-route cell benchmark of proposed
methodology and NVCell2 [3]. NVCell [1] is not able to generate any routable
layouts for the 94 cells. The average cell width (CW) of the 94 cells from
industrial library is 33.90.

Avg. CW Avg. TWL #Routable
Cells

#LVS/DRC
Clean Cells

Compared with Manual CW
Smaller Same Larger

NVCell [1] N/A N/A 0 0 N/A N/A N/A
NVCell2 [3] 34.97 436.67 93 82 21 35 26
Proposed 33.60 422.37 94 94 28 55 11
Impr. [3] 3.9% 3.3% 1% 15% 33.3% 57.1% -57.7%

Avg. 12.7X speedup

Figure 9: Performance evaluation with cells has more than 80 devices.
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Smaller Cell Width Same Cell Width Larger Cell Width

Figure 10: Cell width comparison of NVCell2 [3] and the proposed method. The baseline is the manual designed cell width in the existing industrial library. The
proposed method successfully achieves more number of smaller cell width and number of same cell width cells which has devices more than 32.

clusters from the proposed method, we perform multi-objective
BOHB [6, 7] method to explore the optimal CW, routability, and
TWL in standard cell design automation framework [3].

Table 4 shows the summary of the number of LVS/DRC clean
cells, and cell width comparison to the manual designed cells in the
existing industrial library. Compared to NVCell2 [3], the proposed
transformer model-based clustering method can not only generate
LVS/DRC clean layouts of all single row cells in the industrial
library but also reduce the number of cells with wider CW by 47.8%.
Figure 10 shows the summary of the number of smaller, same, and
larger cell with statistics of NVCell2 [3] and the proposed method.
The proposed transformer model based clustering method achieves
generating more number of smaller and same cell width layouts
with #devices from 32 to more than 76, which are more complex and
challenging for experienced standard cell designers. Moreover, we
select a set of flip-flop cell netlists (i.e., 8 flip-flop cells) and compare
the power, performance, and area (PPA) of generated cell layout
from the proposed approach using characterization tool with the
PPA of manual designed layout. The performance, power, and area
are improved up to 7%, 8%, and 4%, respectively. From the studies,
we demonstrate the proposed method successfully generates high
quality device clusters for reducing the complexity, and assisting
finding optimum cell layouts robustly. Overall, with the proposed
transformer model-based clustering method, the standard cell de-
sign automation framework [3] can automatically generate 100%
of over 1000 single row cells and achieve 14.5% smaller and 83.3%
same CW than existing industrial library.
Table 4: Cell statistics of NVCell [1], NVCell2 [3], and the proposed transformer
model based clustering method on the entire library set (i.e., over 1000 cells).
The baseline cell width for cell width comparison is the manual designed cell
width in the existing industrial library.

#LVS/DRC
Clean Cells

Cell Width Comparison
Smaller Same Larger

NVCell [1] 91.2% 11.8% 77.6% 1.8%
NVCell2 [3] 98.8% 13.7% 80.1% 4.3%
Proposed 100.0% 14.5% 83.3% 2.2%

5 CONCLUSION
We propose a novel transformer model based clustering method

for standard cell design automation - training the model using
LVS/DRC clean cell layouts and leveraging the personalized page
rank vector [4, 5] to cluster the devices with the attentions to
netlist graph and learned embeddings from the actual LVS/DRC
clean layouts in the layout graph. We firstly demonstrate that the
proposed method not only improves the number of LVS/DRC clean
cell layouts by 15%, but also improves avg CW and avg TWL by 3.9%
and 3.3%, respectively, compared to [1] using the 94 complex and

hard to route cell benchmark. In total, the proposed framework can
generate 100% LVS/DRC clean cell layouts over 1000 standard cells
in an industrial standard cell library. Then, we demonstrate that
the proposed method can generate smaller cell layouts for 14.5%
of cells compared to an existing industrial standard cell library of
over 1000 cells. Lastly, we show the performance, power, and area
of a set of generated flip-flop cell layouts are improved up to 7%,
8%, and 4%, respectively, compared to the manual designs.
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